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Abstract. Room-temperatureisotherms of titaniumin Hcpand w-phases are calculated by the 
first-principles linear muffin-tin orbital energy band method. Comparison with experimental 
data shows excellent agreement. Structural phase stability analysis by the Andersen force 
theorem shows that the w-phase is the lowest-energy phase at 0 K and normal volume. The 
possibility that the s 4 d electronic transition is the cause of shock discontinuity at 17.5 GPa 
is also ruled out. 

1. Introduction 

The element titanium (Z = 22) has been extensively studied under high static and shock 
pressures (for a review see Sikkn et a1 (1982)). Static experiments show that Ti, which 
crystallises in the hexagonal close-packed (HCP) structure CY at ambient conditions, 
undergoes a phase transition to a three-atom simple hexagonal structure ( m )  in the 2.9- 
7.5 GPa pressure range (Jamieson 1963, Jayaraman et a1 1963). Recent diamond anvil 
cell experiments have shown that this o-phase continues to exist at least up to 23 GPa 
(Gyanchandani et a1 1988). Shock wave measurements carried out by McQueen et a1 
(1970) showed a discontinuity in the shock velocity-particle velocity plot at 17.5 GPa, 
indicating a phase transition. They associated this with the CY- /3 change (/3 is the BCC 
high-temperature phase), as they observed some traces of the BCC phase in the shock- 
recovered samples. Carter (1973), however, speculated that this discontinuity is related 
to some electronic transition, but Kutsar and German (1976) found a considerable 
amount of o-phase in the recovered samples which had been shock loaded in the vicinity 
of the above discontinuity. Moreover, time-resolved shock wave measurements display 
a two-wave structure. In one set of experiments it is at 11.9 GPa (Kutsar et a1 1982) and 
in another at 6 GPa (Kiselev and Falkov 1982). 

The theoretical work on Ti under pressure, especially on the m-phase, has been very 
limited so far. Band-structure calculations using the augmented plane-wave method 
were carried out at normal volume by Vohra et a1 (1979), but these calculations were 
not self-consistent. Skriver (1985) analysed the phase stability of Ti by the linear muffin- 
tin orbital (LMTO) band-structure method and found that the a-structure has the lowest 
energy when compared with the /3 and FCC structures. He, however, did not include the 
w-structure in his study. 
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In this paper, we present self-consistent band-structure calculations on the a- and 
w-phases of Ti, using the LMTO method. The equation of state of these two phases are 
compared with each other and with experimental data. The stability of the w-phase with 
respect to the other structures is also analysed. Also ruled out is the possibility that the 
s+  d electronic transition is the cause of the observed shock discontinuity at 17.5 GPa. 

2. Method of calculation 

The first-principles band-structure calculations have been performed utilising the LMTO 
method (Andersen 1975) for the a, /3, w and FCC structures. A detailed description 
of the LMTO method has been given by Skriver (1984). We included all relativistic 
contributions except the spin-orbit contribution, employed the exchange-correlation 
potential of von Berth and Hedin and retained all angular momentum components up to 
1 = 3. The electronic configuration employed for Ti was (Ar) (3d4~4p)~ .  The electronic 
states of the (Ar) core were kept ‘frozen’. The pressure contribution due to the core 
overlap calculated using the procedure of Sikka and Godwal (1987) is negligibly small 
for the compressions considered in this paper. The electronic pressure of the ( 3 d 4 ~ 4 p ) ~  
states at 0 K is evaluated using the following relation: 

3 P V =  2 /oEFdENI(€)Sq:(E, S)[ (DI - I ) (DI+I+1)+(E-E , , )S2]  
I 

where NI(€ )  is the projected density of states of angular momentum 1 and qol (E)  is the 
amplitude at the sphere radius S of the normalised radial wavefunction at energy E. 
D,(E) is the logarithmic derivative and E,, is the exchange-correlation energy density 
at the sphere radius S. 

The energy differences between various structures have been calculated using the 
Andersen force theorem (Mackintosh and Andersen 1980). This has been demonstrated 
to work for many elements and ordered compounds (Skriver 1985, McMahan 1984, 
Christensen et a1 1986). Firstly, self-consistent band-structure calculations were per- 
formed for the FCC structure and the ground-state electron density nFCC and the potential 
parameters determined. Then the eigenvalues were determined for the other structures 
employing the same potential parameters. This way the energy difference between the 
two structures is given by the relation 

AEst-FCC = /oEF€Nsl(€) d E  - 6’ ENFcc(E) d E  

as the double-counting terms and the exchange-correlation terms cancel. The muffin- 
tin correction which corrects the electrostatic energy for the non-sphericity of the 
Wigner-Seitz cell is estimated from the expression 

AEM = (1.8 - a M ) q i / S  

for each structure. Here aM is the Ewald constant and qs is the charge per atom 
corresponding to the electron density n(S)  at the sphere radius S. 

The w-phase, which has the AlB, simple hexagonal structure (space group, P6/ 
mmm; c/a = 0.61) with three atoms per unit cell, was treated as a compound in the LMTO 
procedure. In this structure, there are two non-equivalent types of atom: A type at 
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Figure 1. AIB2 structure showing the graphite- 
like net of B atoms. " &  b 

Table 1. Structural energy differences for Ti at R,, = 3.052 au. 

AEBcc-Fcc = -0.0010 Ryd/atom 
AEHCp-FCC = -0.0048 Ryd/atom 
AE,,FCc = -0.0147 Ryd/atom 

position (0 0 0) and B type at positions ( 5 8 1 )  and (344). As shown in figure 1, B-type 
atoms form a graphite-like net. This structure is a fairly close-packed one, as evidenced 
by its Ewald constant ah? = 1.788 837, to be accurately treated by the LMTO method (for 
a discussion of this point, see McMahan (1984)). The atomic sphere radii for the two 
types of atom were taken to be equal. Andersen et a1 (1986) noted that self-consistent 
band-structure calculations were relatively insensitive to the choice of sphere radii. 
Further, the same prescription has been used by Christensen et a1 (1986) for analysing 
the structural stability of compounds using Andersen force theorem. 

The valence bands were sampled with 240, 285, 150 and 81 points per irreducible 
wedge of the Brillouin zone for the FCC, BCC HCP and w structures, respectively. The 
c/a ratio for the HCP structures was kept fixed at 1.586, the experimental value (Kittel 
1977). The uncertainties in the calculated energy differences were estimated to be about 
0.5 mRyd/atom or less. 

3. Results and discussion 

The calculated structural energy differences for the a-, b- and w-phases from the 
reference FCC structure at normal volume (V ,  = 119.02 au; S = 3.052 au) are presented 
in table 1. We find that the energy of the w-phase is the lowest, followed by that of a 
and then that of the b-phase. These results are in agreement with those of Skriver (1985), 
who found that the a-phase is more stable than the /3-phase, and also with those of Ho 
et a1 (1984) (for Zr) who determined that the w-phase has a lower energy than the 
P-phase. Since the pressure at this volume is negative for the w-structure, it will, 
however, have equilibrium volume at a lower value. (This is qualitatively in agreement 
with the 2% difference between the densities of the a- and the pressure-quenched w- 
phase observed experimentally.) The linear extrapolation of the experimental a 3 w- 
phase line to lower temperatures indicates that the w-phase would be more stable than 
the a-phase below 62 K. 
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The crystal structures of the transition metals have been correlated with the number 
of d valence electrons (Pettifor 1977). From the fact that the w-phase occurs in Ti on 
alloying with d-rich transition elements (V, Nb, Cr, W,  etc), Vohra (1979) pointed 
out that the stability of the w-phase under pressure is also related to this d-electron 
occupancy. We corroborate this qualitatively. It should be noted that the average d 
population of the two sites in the w-structure is more than the a-phase by 0.015 electron/ 
atom. This makes a bonding contribution and hence lowers the energy of the w-phase 
with respect to that of the a-phase. 

In figure 2, we plot our calculated room-temperature isotherms for the a- and w- 
phases up to 20 GPa. Also plotted are the experimental data of Vohra et a1 (1981) 
obtained using energy-dispersive x-ray diffraction with a diamond anvil cell. The thermal 
contribution to the pressure at a given volume is approximated by the well known 
Gruneisen equation 

P T  = yC,T. 

Here, C, is the specific heat and y is the Gruneisen parameter, which is estimated from 
the relation py = poyo. (The subscript zeros denote room-temperature values.) The 
value of C, and yo are taken from McQueen et al(l970). It should be noted that the 
uncertainty in y o  and the assumption p y  = poyo would have a negligible effect on the 
calculated 293 K isotherm (Godwal et a1 1983). The curve of the a-phase is in close 
agreement with the experimental data up to 7 GPa, the a-+ w transition pressure. The 
computed isotherm for the o-phase also agrees well with the loading data above 7 GPa 
and also the unloading data; the w-phase, as is well known, is retained metastably. 

The number of occupied states of d orbitals as a function of pressure up to 30 GPa 
for the a-phase are plotted in figure 3. The d-band population smoothly increases and 
does not display any anomalous behaviour. Also, McMahan (1986) has shown that for 
the complete s +- d transition the pressure increased by a factor of 2 for each successive 
element to the right in a given period. Carrying out such computations from K (60 GPa), 
we obtain an estimate of 480 GPa for Ti. This is far too high compared with the pressure 
(17.5 GPa) corresponding to the discontinuity observed in shock measurements. Thus 
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the s+  d transition does not appear to be the cause of shock discontinuity in this 
material. 
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